Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于數據簡化擬合的電動公交車充電負荷預測

來源:電工電氣發布時間:2020-03-27 13:27 瀏覽次數:508
基于數據簡化擬合的電動公交車充電負荷預測
 
端祝超
(江蘇省送變電有限公司,江蘇 南京 210028)
 
    摘 要:在測量統計大量電動公交車相關數據的基礎上,對電動公交車的行駛和充電規律進行了量化分析和數據簡化處理。根據電動公交車電池容量、行駛里程、環境條件等信息構建了基于數據簡化的電動公交車充電功率模型和計算方法。基于上述簡化后的數據信息和相關計算模型,利用優化的蒙特卡洛法對某市電動公交車的充電負荷進行了預測,并分析了不同時長預測負荷的誤差及其原因,驗證了該方法準確性和可行性。數據的簡化處理有效地提高了該預測方法的可實施性,且其預測結果能夠滿足充電設施規劃建設和電網運行規劃的要求。
    關鍵詞:電動公交車;行駛規律;充電負荷預測;蒙特卡洛法;數據簡化
    中圖分類號:TM714     文獻標識碼:A     文章編號:1007-3175(2020)03-0023-05
 
Electric Bus Charging Load Forecast Based on Data Simplification Fitting
 
DUAN Zhu-chao
(Jiangsu Power Transmission and Transfer Co., Ltd, Nanjing 210028, China)
 
    Abstract: Based on the measurement and statistics of a large number of relevant data of electric bus, the quantitative analysis and data simplification of the driving and charging rules are carried out. According to the information of battery capacity, driving distance and environmental conditions, the charging power model and calculation method based on data simplification are constructed. Based on the simplified data information and related calculation model, the optimized Monte Carlo method is used to predict the charging load of electric buses in a city, and the error of the forecasting load with different duration and its causes are analyzed. The accuracy and feasibility of the method are verified. The simplified processing of the data can effectively improve the operability of the prediction method, and the prediction result can meet the requirements of the charging facility planning construction and the grid operation planning.
    Key words: electric bus; driving rules; charging load forecasting; Monte Carlo method; data simplification
 
參考文獻
[1] 蘇小林,張艷娟,武中,等. 規模化電動汽車充電負荷的預測及其對電網的影響[J]. 現代電力,2018,35(1):45-54.
[2] 田立亭,張明霞,汪奐伶. 電動汽車對電網影響的評估和解決方案[J]. 中國電機工程學報,2012,32(31):43-49.
[3] 胡澤春,宋永華,徐智威,等. 電動汽車接入電網的影響與利用[J]. 中國電機工程學報,2012,32(4):1-10.
[4] 李惠玲,白曉民. 電動汽車充電對配電網的影響及對策[J]. 電力系統自動化,2011,35(17):38-43.
[5] 羅卓偉,胡澤春,宋永華,等. 電動汽車充電負荷計算方法[J]. 電力系統自動化,2011,35(14):36-42.
[6] KRISTIEN C N, EDWIN H, JOHAN D.The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J].IEEE Transactions on Power Systems,2010,25(1):371-380.
[7] 宮鑫,林濤,蘇秉華. 插電式混合電動汽車充電對配電網的影響[J]. 電網技術,2012,36(11):30-35.
[8] 汪德夫,張樹冰. 考慮時空分布的電動汽車充電負荷預測及對電網負荷影響分析[J]. 電力學報,2017,32(6):483-489.
[9] 王森,馮耀軒,鄧文雄,等. 考慮時空特性分布的電動汽車充電負荷預測[J]. 浙江電力,2016,35(12):15-20.
[10] 陳昕儒,林祥逸,吳奇珂. 計及用戶行為的電動汽車負荷預測[J]. 電工技術,2017(1):129-130.
[11] 王海玲,張美霞,楊秀. 考慮環境溫度的電動汽車充電負荷預測[J]. 上海電力學院學報,2017,33(2):138-144.
[12] 唐晉娟. 不良天氣條件下高速公路交通安全影響分析[D]. 南京:南京林業大學,2010.
[13] 田立亭,史雙龍,賈卓. 電動汽車充電功率需求的統計學建模方法[J]. 電網技術,2010,34(11):126-130.
[14] TAYLOR J, MAITRA A, ALEXANDER M, et al. Evalution of the impact of plug-in electric vehicle loading on distribution system operations[C]//IEEE Power & Energy Society General Meeting, 2009:1-6.

 

AV在线播放日韩亚洲欧,青春娱乐精品盛宴新视频,久久人人超级碰窝窝窝窝,日本一级特黄无码免费视频,亚洲明星换脸第一页|亚洲欧美中文日韩Aⅴ|欧美色图国产精品